Visualizing changes in circuit activity resulting from denervation and reinnervation using immediate early gene expression.

نویسندگان

  • Meredith D Temple
  • Paul F Worley
  • Oswald Steward
چکیده

We describe a novel strategy to evaluate circuit function after brain injury that takes advantage of experience-dependent immediate early gene (IEG) expression. When normal rats undergo training or are exposed to a novel environment, there is a strong induction of IEG expression in forebrain regions, including the hippocampus. This gene induction identifies the neurons that are engaged during the experience. Here, we demonstrate that experience-dependent IEG induction is diminished after brain injury in young adult rats (120-200 gm), specifically after unilateral lesions of the entorhinal cortex (EC), and then recovers with a time course consistent with reinnervation. In situ hybridization techniques were used to assess the expression of the activity-regulated cytoskeleton-associated protein Arc at various times after the lesion (4, 8, 12, 16, or 30 d). One group of rats was allowed to explore a complex novel environment for 1 hr; control operated animals remained in their home cage. In unoperated animals, exposure to the novel environment induced Arc mRNA levels in most pyramidal neurons in CA1, in many pyramidal neurons in CA3, and in a small number of dentate granule cells. This characteristic pattern of induction was absent at early time points after unilateral EC lesions (4 and 8 d) but recovered progressively at later time points. The recovery of Arc expression occurred with approximately the same time course as the reinnervation of the dentate gyrus as a result of postlesion sprouting. These results document a novel approach for quantitatively assessing activity-regulated gene expression in polysynaptic circuits after trauma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dach2-Hdac9 signaling regulates reinnervation of muscle endplates.

Muscle denervation resulting from injury, disease or aging results in impaired motor function. Restoring neuromuscular communication requires axonal regrowth and endplate reinnervation. Muscle activity inhibits the reinnervation of denervated muscle. The mechanism by which muscle activity regulates muscle reinnervation is poorly understood. Dach2 and Hdac9 are activity-regulated transcriptional...

متن کامل

Dev125674 4038..4048

Muscle denervation resulting from injury, disease or aging results in impaired motor function. Restoring neuromuscular communication requires axonal regrowth and endplate reinnervation. Muscle activity inhibits the reinnervation of denervated muscle. The mechanism by which muscle activity regulates muscle reinnervation is poorly understood. Dach2 and Hdac9 are activity-regulated transcriptional...

متن کامل

Time course of changes in lipoprotein lipase activity in rat skeletal muscles during denervation-reinnervation.

The effects of denervation-reinnervation after sciatic nerve crush on the activity of extracellular and intracellular lipoprotein lipase (LPL) were examined in the soleus and red portion of gastrocnemius muscles. The activity of both LPL fractions was decreased in the two muscles within 24 h after the nerve crush and remained reduced for up to 2 wk. During the reinnervation period, LPL activity...

متن کامل

Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep.

Previous studies indicate that catheter-based renal denervation reduces blood pressure and renal norepinephrine spillover in human resistant hypertension. The effects of this procedure on afferent sensory and efferent sympathetic renal nerves, and the subsequent degree of reinnervation, have not been investigated. We therefore examined the level of functional and anatomic reinnervation at 5.5 a...

متن کامل

The plasticity of denervated and reinnervated laryngeal muscle: focus on single-fiber myosin heavy-chain isoform expression.

No studies have examined the effects of denervation on the single-fiber distribution of myosin heavy-chain (MyHC) isoforms in laryngeal muscle. The fast type IIB MyHC isoform represents the largest proportion of the myosin pool in the posterior cricoarytenoid (PCA) and the thyroarytenoid (TA) muscles. However, the fast type IIB MyHC isoform is distributed differently at the single-fiber level. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 7  شماره 

صفحات  -

تاریخ انتشار 2003